In collaboration with Payame Noor University and Iranian Electronic Learning Association

Document Type : scientific-research

Authors

1 Department of Computer Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

2 Department of Computer Engineering, University of Kurdistan

Abstract

Massive open online courses (MOOCs) have recently becoming a popular means of education. They generally give the students large-scale options. However, the diversity of MOOC courses available and their rapid updates make it more difficult for students to find fresh material relevant to them. A recommendation system (RS) connects the learner with the best learning resources to meet students' interests. The majority of recommender system research is based on the existence of explicit feedback, which is often impossible or inaccessible in MOOCs. As a result, in this paper, we model user positive and negative preferences using implicit feedback acquired passively by watching various types of students' behavior. This paper proposes a novel course recommendation, which employs Siamese Neural Networks (SNNs) to extract latent representations of students and courses using a loss function that favors observed over unobserved courses. The similarity of users and courses is then determined using a novel representation mechansim. Furthermore, recommending those courses with limited interaction data is a major challenge in MOOC recommenders. To tackle this issue, the courses profiles are used as side information which helps us create more accurate representations. To evaluate the performance of the propsoed method, we performed the experiments on a real dataset gathered from XuetangX—one of China's largest MOOCs. The results of the experiments show that the proposed method outperforms a number of baseline nad state-of-the-art MOOC recommenders.

Keywords

Article Title [Persian]

یک سیستم توصیه بازخورد ضمنی برای دوره های آنلاین آزاد گسترده

Authors [Persian]

  • آزاده فاروقی 1
  • پرهام مرادی 2

1 گروه مهندسی کامپیوتر دانشگاه کردستان

2 گروه مهندسی کامپیوتر دانشگاه کردستان

Abstract [Persian]

دوره های گسترده آنلاین باز (MOOCs) اخیراً به یک ابزار آموزشی محبوب تبدیل شده اند. آنها به طور کلی گزینه های در مقیاس بزرگ را به دانش آموزان می دهند. با این حال، تنوع دوره های MOOC موجود و به روز رسانی سریع آنها، یافتن مطالب جدید مرتبط با آنها را برای دانش آموزان دشوارتر می کند. یک سیستم توصیه (RS) یادگیرنده را با بهترین منابع یادگیری برای برآورده کردن علایق دانش آموزان مرتبط می کند. اکثر تحقیقات سیستم توصیه‌گر بر اساس وجود بازخورد صریح است که اغلب در MOOC غیرممکن یا غیرقابل دسترسی است. در نتیجه، در این مقاله، ترجیحات مثبت و منفی کاربر را با استفاده از بازخورد ضمنی که به طور منفعلانه با مشاهده انواع مختلف رفتار دانش‌آموزان به دست می‌آید مدل می‌کنیم. این مقاله یک توصیه دوره جدید را پیشنهاد می‌کند، که از شبکه‌های عصبی سیامی (SNN) برای استخراج بازنمایی‌های نهفته از دانش‌آموزان و دوره‌ها با استفاده از یک تابع ضرر استفاده می‌کند که به نفع مشاهده نسبت به دوره‌های مشاهده نشده است. سپس شباهت کاربران و دوره ها با استفاده از یک مکانیزم نمایش جدید تعیین می شود. علاوه بر این، توصیه دوره‌هایی با داده‌های تعامل محدود یک چالش بزرگ در توصیه‌کنندگان MOOC است. برای مقابله با این موضوع، از نمایه دوره ها به عنوان اطلاعات جانبی استفاده می شود که به ما کمک می کند تا نمایش های دقیق تری ایجاد کنیم. برای ارزیابی عملکرد روش پیشنهادی، آزمایش‌ها را روی یک مجموعه داده واقعی جمع‌آوری‌شده از XuetangX انجام دادیم که یکی از بزرگترین MOOC‌های چین است. نتایج آزمایش‌ها نشان می‌دهد که روش پیشنهادی از تعدادی از توصیه‌کنندگان MOOC مبنا و پیشرفته‌تر عمل می‌کند.

Keywords [Persian]

  • MOOCs بازخورد ضمنی
  • سیستم توصیه شبکه عصبی سیامی
  • اطلاعات محتوا
References
[1] Aher, S. B., & Lobo, L. (2013). Combination of machine learning algorithms for
recommendation of courses in E-Learning System based on historical data. KnowledgeBased
Systems, 51, 1–14.
[2] Bennett, J., & Lanning, S. (2007). The Netflix Prize. KDD Cup and Workshop, 3–6.
[3] Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D., & Seaton, D. T.
(2013). Studying learning in the worldwide classroom research into edX’s first MOOC.
Research & Practice in Assessment, 8, 13–25.
[4] Dakhel, G. M., & Mahdavi, M. (2013). Providing an effective collaborative filtering
algorithm based on distance measures and neighbors’ voting. International Journal of
Computer Information Systems and Industrial Management Applications, 5, 524–531.
[5] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., others. (2010).
The YouTube video recommendation system. Proceedings of the Fourth ACM
Conference on Recommender Systems, 293–296.
[6] DeBoer, J., Stump, G. S., Seaton, D., Ho, A., Pritchard, D. E., & Breslow, L. (2013).
Bringing student backgrounds online: MOOC user demographics, site usage, and online
learning. Educational Data Mining.
[7] Dong, Y., Chawla, N. V, & Swami, A. (2017). metapath2vec: Scalable representation
learning for heterogeneous networks. Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 135–144.
[8] Gao, M., Chen, L., He, X., & Zhou, A. (2018). Bine: Bipartite network embedding. The
41st International ACM SIGIR Conference on Research & Development in Information
Retrieval, 715–724.
[9] Gong, J., Wang, S., Wang, J., Feng, W., Peng, H., Tang, J., & Yu, P. S. (2020).
Attentional graph convolutional networks for knowledge concept recommendation in
moocs in a heterogeneous view. Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 79–88.
[10] Guo, P. J., & Reinecke, K. (2014). Demographic differences in how students navigate
through MOOCs. Proceedings of the First ACM Conference on Learning@ Scale
Conference, 21–30.
[11] Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural networks for one-shot
image recognition. ICML Deep Learning Workshop, 2. Lille.
[12] Liang, D., Altosaar, J., Charlin, L., & Blei, D. M. (2016). Factorization meets the item
embedding: Regularizing matrix factorization with item co-occurrence. Proceedings of
the 10th ACM Conference on Recommender Systems, 59–66.
[13] Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item
collaborative filtering. IEEE Internet Computing, 7(1), 76–80.
https://doi.org/10.1109/MIC.2003.1167344
[14] Lops, P., Gemmis, M. de, & Semeraro, G. (2011). Content-based recommender systems:
State of the art and trends. Recommender Systems Handbook, 73–105.
[15] Manouselis, N., Drachsler, H., Verbert, K., & Duval, E. (2012). Recommender systems
for learning. Springer Science & Business Media.
[16] Pang, Y., Liao, C., Tan, W., Wu, Y., & Zhou, C. (2018). Recommendation for MOOC
with learner neighbors and learning series. International Conference on Web Information
Systems Engineering, 379–394. Springer.
[17] Piao, G., & Breslin, J. G. (2016). Analyzing MOOC entries of professionals on LinkedIn
for user modeling and personalized MOOC recommendations. Proceedings of the 2016
Conference on User Modeling Adaptation and Personalization, 291–292.
[18] Qiu, J., Tang, J., Liu, T. X., Gong, J., Zhang, C., Zhang, Q., & Xue, Y. (2016). Modeling
and predicting learning behavior in MOOCs. Proceedings of the Ninth ACM 
76 Iranian Distance Education Journal Vol. 3, No. 2, (New Series) Summer-Autumn 2021
International Conference on Web Search and Data Mining, 93–102.
[19] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). BPR: Bayesian
personalized ranking from implicit feedback. Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence 452–461.
[20] Sandeen, C. (2013). Integrating MOOCs into traditional higher education: The emerging
“MOOC 3.0” era. Change: The Magazine of Higher Learning, 45(6), 34–39.
[21] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for
face recognition and clustering. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 815–823.
[22] Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for
automating “word of mouth.” Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 210–217.
[23] Sidi, L., & Klein, H. (2020). Neural Network-Based Collaborative Filtering for Question
Sequencing. ArXiv Preprint ArXiv:2004.12212.
[24] Toscher, A., & Jahrer, M. (2010). Collaborative filtering applied to educational data
mining. KDD Cup.
[25] Wilkowski, J., Deutsch, A., & Russell, D. M. (2014). Student skill and goal achievement
in the mapping with google MOOC. Proceedings of the First ACM Conference on
Learning@ Scale Conference, 3–10.
[26] Zhang, H., Yang, H., Huang, T., & Zhan, G. (2017). DBNCF: Personalized courses
recommendation system based on DBN in MOOC environment. 2017 International
Symposium on Educational Technology (ISET), 106–108. IEEE.