Document Type : scientific-research
Authors
1 A/Prof. of Department of Administration and Educational Planning, Shiraz University, Shiraz, Iran
2 Ph.D. Student, Department of Administration and Educational Planning, Shiraz University, Shiraz, Iran
3 Master Student, Department of Power and Control Engineering, Shiraz University, Shiraz, Iran
4 Prof. of Department of Power and Control Engineering, Shiraz University, Shiraz, Iran
Abstract
The purpose of this case study was to measure satisfaction of some postgraduate engineering students at Shiraz University about virtual and remote laboratories. The participants were 18 electrical engineering students selected from Shiraz University through purposeful samples. The studied variables in order to measure the satisfaction of remote laboratories included students' focused attention during the use of the virtual laboratory (FA), perceived usefulness of virtual lab (PU), virtual lab approval by students (Confirm), students' satisfaction with the virtual laboratory(Satisfaction), fun and enjoyable virtual lab (Play), easily perceived by students in using a virtual lab (PEU), Attitude to the virtual laboratory (Attitude), tendency to use the virtual lab continuously (ICU), quality of virtual laboratory design (QD). Results revealed that students' satisfaction with the virtual laboratory was above the middle standard rating. Furthermore, from the students' point of view, the quality of the virtual laboratory had a significant effect on their "Satisfaction" with the virtual laboratory (Sig. 0.000, B = 0.885), and from the perspective of the students, the QD had a significant effect on ICU (Sig. 0.000, B = 0.937). Finally, the regression analysis showed that the QD had a significant effect on students' attitudes toward the virtual laboratory (Sig. 0.000, B = 0.885).
Keywords
Article Title [Persian]
سنجش میزان رضایت دانشجویان کارشناسی ارشد مهندسی دانشگاه شیراز از آزمایشگاه های مجازی و از راه دور
Authors [Persian]
- قاسم سلیمی 1
- فاطمه میرغفاری 2
- محمد حسن جانفشان 3
- سید علی اکبر صفوی 4
1 دانشیار گروه مدیریت و برنامه ریزی آموزشی، دانشگاه شیراز، شیراز، ایران
2 دانشجو دکتری، گروه مدیریت و برنامه ریزی آموزشی، دانشگاه شیراز، شیراز، ایران
3 دانشجوی کارشناسی ارشد، گروه مهندسی قدرت و کنترل، دانشگاه شیراز، شیراز، ایران
4 استاد تمام گروه مهندسی قدرت و کنترل، دانشگاه شیراز، شیراز، ایران
Abstract [Persian]
هدف این مطالعه موردی سنجش میزان رضایت تعدادی از دانشجویان کارشناسی ارشد مهندسی دانشگاه شیراز از آزمایشگاه های مجازی و راه دور بود. شرکت کنندگان 18 نفر از دانشجویان مهندسی برق دانشگاه شیراز بودند که با نمونه گیری هدفمند انتخاب شدند. متغیرهای مورد مطالعه به منظور سنجش میزان رضایت از آزمایشگاه های راه دور شامل توجه متمرکز دانشجویان در استفاده از آزمایشگاه مجازی (FA)، سودمندی درک شده از آزمایشگاه مجازی (PU)، تایید آزمایشگاه مجازی توسط دانشجویان (Confirm)، رضایت دانشجویان از آزمایشگاه مجازی (رضایت)، آزمایشگاه مجازی سرگرم کننده و لذت بخش (بازی)، درک آسان توسط دانشجویان در استفاده از آزمایشگاه مجازی (PEU)، نگرش به آزمایشگاه مجازی (نگرش)، تمایل به استفاده مداوم از آزمایشگاه مجازی (ICU)، کیفیت طراحی آزمایشگاه مجازی (QD). نتایج نشان داد که میزان رضایت دانشجویان از آزمایشگاه مجازی بالاتر از سطح استاندارد متوسط است. علاوه بر این، از دیدگاه دانشجویان، کیفیت آزمایشگاه مجازی بر رضایت آنها از آزمایشگاه مجازی تأثیر بسزایی داشت (Sig. 0.000، B = 0.885) و از دیدگاه دانشجویان، QD بر میزان رضایت آنها از آزمایشگاه مجازی تأثیر داشت. اثر قابل توجهی بر ICU (Sig. 0.000، B = 0.937). در نهایت، تجزیه و تحلیل رگرسیون نشان داد که QD بر نگرش دانشجویان نسبت به آزمایشگاه مجازی تأثیر معناداری دارد (Sig. 0.000، B = 0.885).
Keywords [Persian]
- آزمایشگاه های مجازی
- آزمایشگاه های راه دور
- رضایت
- فارغ التحصیلان
- کووید-19
[1]Abou Faour, M., & Ayoubi, Z. (2017). The effect of using virtual laboratory on grade 10
students’ conceptual understanding and their attitudes towards physics. Journal of Education
in Science Environment and Health, 4(1), 54-68.
[2]Abumalloh, R. A., Asadi, S., Nilashi, M., Minaei-Bidgoli, B., Nayer, F. K., Samad, S., ... &
Ibrahim, O. (2021). The impact of coronavirus pandemic (COVID-19) on education: The role
of virtual and remote laboratories in education. Technology in Society, 67, 101728.
[3]Achuthan, K., Raghavan, D., Shankar, B., Francis, S. P., & Kolil, V. K. (2021). Impact of
remote experimentation, interactivity and platform effectiveness on laboratory learning
outcomes. International Journal of Educational Technology in Higher Education, 18(1), 1-24.
[4]Bawaneh, A. K. (2021). The satisfaction level of undergraduate science students towards using
e-learning and virtual classes in exceptional condition covid-19 crisis. Turkish Online Journal
of Distance Education, 22(1), 52-65.
[5]Bhute, V. J., Inguva, P., Shah, U., & Brechtelsbauer, C. (2021). Transforming traditional
teaching laboratories for effective remote delivery—A review. Education for Chemical
Engineers, 35, 96-104.
[6]Brooks, S. M., & Alper, H. S. (2021). Applications, challenges, and needs for employing
synthetic biology beyond the lab. Nature Communications, 12(1), 1-16.
[7]Case, J. M., & Light, G. (2011). Emerging research methodologies in engineering education
research. Journal of Engineering Education, 100(1), 186-210.
[8]Corter, J. E., Nickerson, J. V., Esche, S. K., & Chassapis, C. (2004, October). Remote versus
hands-on labs: A comparative study. In 34th Annual Frontiers in Education, 2004. FIE
2004. (pp. F1G-17). IEEE.
[9]Corter, J. E., Nickerson, J. V., Esche, S. K., Chassapis, C., Im, S., & Ma, J. (2007).
Constructing reality: A study of remote, hands-on, and simulated laboratories. ACM
Transactions on Computer-Human Interaction (TOCHI), 14(2), 7-es.
[10] DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. Mit Press.
[11] Domínguez, M., Fuertes, J. J., Prada, M. A., Alonso, S., & Morán, A. (2014). Remote
laboratory of a quadruple tank process for learning in control engineering using different
industrial controllers. Computer Applications in Engineering Education, 22(3), 375-386.
[12] Dunne, J., & Ryan, B. (2010). Improving the undergraduate laboratory learning experience
through redesigned teaching and assessment strategies integrating transferable skills and
focusing on feedback. Teaching Fellowships, 21, 1–8.
[13] Estriegana, R., Medina-Merodio, J. A., & Barchino, R. (2019). Student acceptance of virtual
laboratory and practical work: An extension of the technology acceptance model. Computers
& Education, 135, 1-14.
[14] Gamage, K. A., Wijesuriya, D. I., Ekanayake, S. Y., Rennie, A. E., Lambert, C. G., &
Gunawardhana, N. (2020). Online delivery of teaching and laboratory practices: continuity of
university programmes during COVID-19 pandemic. Education Sciences, 10(10), 291.
[15] Garcia, M., Quiroga, J., & Ortin, F. (2021). An infrastructure to deliver synchronous remote
programming labs. IEEE Transactions on Learning Technologies, 14(2), 161-172.
[16] J. M., McKimm, P., Lindberg, R., & Schmidt, M. (2019). Here or their instruction: Lessons
learned in implementing innovative approaches to blended synchronous learning. Tech
Trends, 63(2), 123–132. https://doi.org/10.1007/s11528-018-0344-z.
[17] Kang, J., & Temkin, S. (2022). Integration of Web-based Arduino/circuits Simulator in
Enhancing Future Engineering Student Projects. In AIAA SCITECH 2022 Forum (p. 1352).
[18] Kapilan, N., Vidhya, P., & Gao, X. Z. (2021). Virtual laboratory: A boon to the mechanical
engineering education during covid-19 pandemic. Higher Education for the Future, 8(1), 31-
46.
14 Iranian Distance Education Journal, Vol. 3, No. 2, (New Series) Summer-Autumn 2021
[19] Khan, Z. H., & Abid, M. I. (2021). Distance learning in engineering education: Challenges
and opportunities during COVID-19 pandemic crisis in Pakistan. The International Journal of
Electrical Engineering & Education, 0020720920988493.
[20] Lakhal, S., Bateman, D., & Bedard, J. (2017). Blended synchronous delivery modes in
graduate programs: A literature review and its implementation in the master teacher program.
Collected Essays on Learning and Teaching, 10, 47–60.
https://doi.org/10.22329/celt.v10i0.4747.
[21] Latchman, H. A., Salzmann, C., Thottapilly, S., & Bouzekri, H. (1998, July). Hybrid
asynchronous and synchronous learning networks in distance education. In International
Conference on Engineering Education (pp. 93-107).
[22] Lima, N., Viegas, C., & Garcia-Peñalvo, F. (2019, October). Didactical use of a remote lab:
a qualitative reflection of a teacher. In Proceedings of the Seventh International Conference
on Technological Ecosystems for Enhancing Multiculturality (pp. 99-108).
[23] Lindsay, E. D., & Good, M. C. (2005). Effects of laboratory access modes upon learning
outcomes. IEEE transactions on education, 48(4), 619-631.
[24] Lindsay, E., Naidu, S., & Good, M. (2007). A different kind of difference: Theoretical
implications of using technology to overcome separation in remote laboratories. International
Journal of Engineering Education, 23(4), 772.
[25] Lowe, D., Newcombe, P., & Stumpers, B. (2013). Evaluation of the use of remote
laboratories for secondary school science education. Research in Science Education, 43(3),
1197-1219.
[26] Machotka, J., Nafalski, A., & Nedić, Z. (2011). The history of developments of Remote
experiments (Doctoral dissertation, World Institute for Engineering and Technology
Education).
[27] Olson, G. M., & Olson, J. S. (2000). Distance matters. Human–computer interaction, 15(2-
3), 139-178.
[28] Padilla-Meléndez, A., del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived
playfulness, gender differences and technology acceptance model in a blended learning
scenario. Computers & Education, 63, 306-317.
[29] Radhamani, R., Kumar, D., Nizar, N., Achuthan, K., Nair, B., & Diwakar, S. (2021). What
virtual laboratory usage tells us about laboratory skill education pre-and post-COVID-19:
Focus on usage, behavior, intention and adoption. Education and information
technologies, 26(6), 7477-7495.
[30] Raes, A., Detienne, L., Windey, I., & Depaepe, F. (2019). A systematic literature review on
synchronous hybrid learning: gaps identified. Accepted for publication in Learning
Environments Research.
[31] Reeping, D., & Knight, D. B. (2021). Information asymmetries in web ‐based information
for engineering transfer students. Journal of Engineering Education, 110(2), 318-342.
[32] Rowe, R. J., Koban, L., Davidoff, A. J., & Thompson, K. H. (2018). Efficacy of online
laboratory science courses. Journal of Formative Design in Learning, 2(1), 56-67.
[33] Saeed Al-Maroof, R., Alhumaid, K., & Salloum, S. (2021). The continuous intention to use
e-learning, from two different perspectives. Education Sciences, 11(1), 6.
[34] Safavi, A. A., Salehi, S., Motamedi, M., Kikha, E., Naghavi, V., & Ghaffari, H. (2007). The
First Iranian Virtual and Remote Laboratory for Control Engineer: Design and
Implementation. Iranian Journal of Engineering Education, 9(34), 57-76.
[35] Safavi, A., Safavi, A. A., & Veisi, P. (2013, February). A remote and virtual PLC laboratory
via smartphones. In 4th International Conference on e-Learning and e-Teaching (ICELET
2013) (pp. 63-68). IEEE.
Ghasem Salimi et al: Measuring Satisfaction of … 15
[36] Sonnenwald, D. H., Whitton, M. C., & Maglaughlin, K. L. (2003). Evaluating a scientific
collaboratory: Results of a controlled experiment. ACM Transactions on Computer-Human
Interaction (TOCHI), 10(2), 150-176.
[37] Stefanovic, S., & Klochkova, E. (2021). Digitalisation of teaching and learning as a tool for
increasing students’ satisfaction and educational efficiency: Using smart platforms in
efl. Sustainability, 13(9), 4892.
[38] Tang, J. (2021). Understanding the telework experience of people with
disabilities. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1-27.
[39] Wang, F. (2018). Computer Distance virtual Experiment teaching Application based on
virtual Reality technology. International Journal of Emerging Technologies in Learning
(iJET), 13(04), 83-94.
[40] Wei, J., Treagust, D. F., Mocerino, M., Lucey, A. D., Zadnik, M. G., & Lindsay, E. D. (2019).
Understanding interactions in face-to-face and remote undergraduate science laboratories: a
literature review. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1-16.
[41] Xie, C., Li, C., Huang, X., Sung, S., & Jiang, R. (2021). Engaging students in distance
learning of science with remote labs 2.0. IEEE Transactions on Learning Technologies.
[42] Yalcin-Celik, A., Kadayifci, H., Under, S., & Turan-Oluk, N. (2017). Challenges faced by
pre-service chemistry teachers teaching in a laboratory and their solution proposals. European
Journal of Teacher Education, 40(2), 210–230.
[43] Zhang, H., & Zhang, S. (2019, January). Design and Implementation of Virtual Laboratory
for Computer Assembly. In 3rd International Seminar on Education Innovation and Economic
Management (SEIEM 2018). Atlantis Press.
[44] Zhang, M. H., Su, C. Y., Li, Y., & Li, Y. Y. (2020). Factors affecting Chinese university
students’ intention to continue using virtual and remote labs. Australasian Journal of
Educational Technology, 36(2), 169-185